Electrochemical growth behavior, surface properties, and enhanced in vivo bone response of TiO2 nanotubes on microstructured surfaces of blasted, screw-shaped titanium implants
نویسنده
چکیده
TiO(2) nanotubes are fabricated on TiO(2) grit-blasted, screw-shaped rough titanium (ASTM grade 4) implants (3.75 x 7 mm) using potentiostatic anodization at 20 V in 1 M H(3)PO(4) + 0.4 wt.% HF. The growth behavior and surface properties of the nanotubes are investigated as a function of the reaction time. The results show that vertically aligned nanotubes of approximately 700 nm in length, with highly ordered structures of approximately 40 nm spacing and approximately 15 nm wall thickness may be grown independent of reaction time. The geometrical properties of nanotubes increase with reaction time (mean pore size, pore size distribution [PSD], and porosity approximately 90 nm, approximately 40-127 nm and 45%, respectively for 30 minutes; approximately 107 nm, approximately 63-140 nm and 56% for one hour; approximately 108 nm, approximately 58-150 nm and 60% for three hours). It is found that the fluorinated chemistry of the nanotubes of F-TiO(2), TiOF(2), and F-Ti-O with F ion incorporation of approximately 5 at.%, and their amorphous structure is the same regardless of the reaction time, while the average roughness (Sa) gradually decreases and the developed surface area (Sdr) slightly increases with reaction time. The results of studies on animals show that, despite their low roughness values, after six weeks the fluorinated TiO(2) nanotube implants in rabbit femurs demonstrate significantly increased osseointegration strengths (41 vs 29 Ncm; P = 0.008) and new bone formation (57.5% vs 65.5%; P = 0.008) (n = 8), and reveal more frequently direct bone/cell contact at the bone-implant interface by high-resolution scanning electron microscope observations as compared with the blasted, moderately rough implants that have hitherto been widely used for clinically favorable performance. The results of the animal studies constitute significant evidence that the presence of the nanotubes and the resulting fluorinated surface chemistry determine the nature of the bone responses to the implants. The present in vivo results point to potential applications of the TiO(2) nanotubes in the field of bone implants and bone tissue engineering.
منابع مشابه
Effect of micro-roughness produced by TiO2 blasting--tensile testing of bone attachment by using coin-shaped implants.
The aim of the present study was to examine bone response to micro-rough titanium implants. Forty coin-shaped implants were divided into eight groups according to their surface roughness. The first group had electropolished surfaces. The surfaces of implant groups 2-8 were blasted with TiO2 particles with incremental grain sizes ranging from 7.5-12.5 to 270-330 microns. Five implants from each ...
متن کاملSurface nanofeature effects on titanium-adherent human mesenchymal stem cells.
PURPOSE Hydrofluoric acid treatment of moderately rough commercially pure titanium produced by titanium oxide (TiO2) grit blasting (OsseoSpeed) results in a surface with nanofeatures. The aim of this project was to better understand the effect of surface nanotopography on adherent osteoblastic differentiation. MATERIALS AND METHODS Human mesenchymal stem cells were grown on TiO2 grit-blasted ...
متن کاملRemoval torque and histomorphometric investigation of 4 different titanium surfaces: an experimental study in the rabbit tibia.
This study presents a histomorphometric and biomechanical comparison of bone response to commercially pure titanium screws with 4 different types of surface topographies placed in the tibial metaphysis of 12 rabbits. Each rabbit had 4 implants placed, 2 in each tibia. The 4 surface topographies were a machined surface, a grit-blasted surface, a plasma-sprayed surface, and an acid-etched (Osseot...
متن کاملAdult Stem Cells Properties in Terms of Commitment, Aging and Biological Safety of Grit-Blasted and Acid-Etched Ti Dental Implants Surfaces
Titanium (Ti) is one of the most widely used biomaterials for manufacturing dental implants. The implant surface properties strongly influence osseointegration. The aim of the present study was to in vitro investigate the characteristics of Ti dental implants in terms of mutagenicity, hemocompatibility, biocompatibility, osteoinductivity and biological safety. The Ames test was used to test the...
متن کاملEnhanced osteogenic activity and anti-inflammatory properties of Lenti-BMP-2-loaded TiO2 nanotube layers fabricated by lyophilization following trehalose addition
To enhance biocompatibility and osseointegration between titanium implants and surrounding bone tissue, numerous efforts have been made to modify the surface topography and composition of Ti implants. In this paper, Lenti-BMP-2-loaded TiO2 nanotube coatings were fabricated by lyophilization in the presence of trehalose to functionalize the surface. We characterized TiO2 nanotube layers in terms...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010